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PLASTIC ANALYSIS OF FIBRE-REINFORCED PLATES
UNDER ROTATIONALLY SYMMETRIC CONDITIONS

J. ZAwiDzK1 and A. SAwWCZUK

Polish Academy of Sciences, Warsaw

Abstract—Complete solutions of plastic bending of rotationally symmetric plates are presented in the case of
non-homogeneity specific to polar nets of extensible reinforcement. The results are compared with those of
homogeneous plates, indicating the differences in collapse loads, collapse modes and stress fields. Optimum
design of fibre-reinforced plates is studied.

1. INTRODUCTION

AVAILABLE limit analysis solutions of rotationally symmetric problems of plate flexure
concern a wide range of yield criteria [1,2], material anisotropy [3-5] and piece-wise
linear non-homogeneity {6]. However, a technically important case of fibre-reinforced
slabs with polar nets has not been studied. Such a type of fibre arrangement results in a
special form of non-homogeneity and orthotropy of the plate yield moduli; thus it requires
a separate analysis of both the collapse load and the collapse mechanism. This is partic-
ularly so because the design based on yield criteria independent of the position co-ordinates,
if safe, leads to overestimation of the material required.

This note stems from the study of reinforced concrete plates with non-uniform
reinforcement. The elastic—plastic flexure of such structures was studied by Olszak and
Murzewski [7]. Attention was confined rather to the initial stages of elastic—plastic bending
with account for both the non-homogeneity and orthotropy. In the present paper complete
solutions to the plastic bending of circular and annular plates are presented in case of
nonhomogeneity specific to polar nets of extensible reinforcement. The results are compared
with those of homogeneous plates, indicating the differences in collapse modes and stress
fields. Suggestions regarding the optimum plastic design of the considered structures are
given.

2. ASSUMPTIONS

We consider plates made of perfectly plastic material supporting compression only
and reinforced with perfectly plastic fibres to carry tension. The response of such structures
to external loads is studied under the following specific assumptions :

(a) the rigid—plastic model of deformation applies.

(b) the place is plastically orthotropic and non-homogeneous and with respect to both
of these properties the structure is rotationally symmetric,

(c) the maximum principal moment yield criterion applies,

(d) the stress field is related to the rates of deformation through the plastic potential
flow law.
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We are interested in complete solutions of the plastic plate problem, thus we are
required

(a) to determine the plastic and rigid zones,

(b) to find the collapse load,

(c) to ascertain a statically admissible stress field satisfying the actual yield condition
in the deforming zones and not violating this condition in the rigid ones,

(d) to associate with the stress solution a kinematically admissible collapse mode
assuring a positive dissipation in the deforming zones.

We purposely adopt a procedure leading to the complete solution, without using the
theorems of limit analysis.

Let us consider a circular slab of radius R reinforced with a polar net, the pole
coinciding with the plate centre. The circumferential reinforcement is uniform, thus the
circumferential yield moments do not depend upon the position. The radial reinforcement
is uniform per unit angle, thus the radial yield moment is inversely proportional to the
radius. Reinforcement consists of different nets for positive and negative bending, therefore
different yield moments result for positive and negative bending. The yield moments of
such orthotropic and non-homogeneous structures are shown in Fig. 1, which indicates
also the adopted notation and sign convention.
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FiG. 1. Variation of yield moments with radius.

The following dimensionless variables will be used
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where M, Q, p and W stand for the bending moments, the shear force, the external loading
and the deflection rate (positive downwards), respectively. The appropriate dimensionless
form of the non-homogeneous yield equation is

fi=m—x/o=0 or fy=m+Ae=0 for —v<m,<10>e—0, (2)
fo=m,—1=0 or fy=m,+v=0 for —1l/g <m <%/, (3)
In view of (1) the differential equilibrium equations become

(em,)—m,—0q =0,  (eq)+gP = 0. (4)
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Stress fields in plastic bending can have discontinuities. Under the requirements
m} (¢)—m_ (¢) = m,] = 0 and P] = O the equations (4) yield the following relation on a

r

circumferential line of stress discontinuity

The plastic potential flow law applied to the yield equations (2) and (3) and combined
with the deflection—curvature relations of the plate theory gives the following expressions
for the rates of curvature

w'  of,/om, 0, a=13
ot _ om, _ { ©)

w o of/om, | 0, «=24

Thus the displacement rate field is not influenced by the non-homogeneity in question
and collapse mechanisms consist of surfaces

w=c¢, =const. for fi =0, f3=0, (7)
W= c0+C; for f,=0, f,=0, (8)

as they are for homogeneous plates under the maximum moment yield criterion [2]. The
hinge line forms whenever f, = f5, f; = fa. f5 = f2. f3 = fa, 1.€., at the corners of the yield
rectangle defined by (2) and (3) for a fixed g.

3. CIRCULAR PLATES

In order to contrast the behaviour of the studied slabs and of homogeneous plates,

let us consider a clamped circular plate subjected to uniform pressure p for e < ¢ < L.

Since the problem is statically determinate with respect to the shear force equations (4)
reduce to

(om,) —m,+Pg*/2 = 0. ©9)

One can conclude from (7) and (8) that the most general form of collapse is associated
with plastic deformation confined to the annular region g, < ¢ < 1 with the central part
remaining rigid. Therefore in the deforming region the stress profile corresponds to
f2=0,1e.

mye) =1 —ie<mle)<xfe. @ <e<l, (10)
the stress boundary conditions being
m(l) = -4, mlgo) = x/eo. (11)
Integration of (9) for the yield equation (10) gives
m, = 1—-Pg?+ A/g. (12)

For evaluation of the collapse load, the radius g, and the integration constant A we
have only two conditions (11). However, if we want to extend the stress field into the rigid
region <0, g,> an additional relation can be established. Looking for a continuous exten-
sion with regard to m,, thus requiring m,] = 0, the relation (5) results in the following
condition at the rigid—plastic boundary

m]=0 for ¢ =g (13)
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At ¢ = g, the m, satisfies (10) and in the neighbourhood it is required not to violate
the yield condition; thus it has to satisfy the condition m,(¢) < x/¢. This, in view of (11)
and (13), results in the requirement for m, to be tangent to the yield function defining the
non-homogeneity, thus

M=o = —#/03. (14)

The conditions (11) and (14) constitute a complete set for the unknown quantities and
completely specify the “static” problem without any reference to the theorems on bounds
and without any reference to the kinematics. Considering simply kinematics and making
use of the upper bound theorem we would be able to derive (15) below but this would leave us
without sufficient information concerning the stress field in the central (rigid) zone. Even-
tually, for the radius of the rigid—plastic boundary the following equation is obtained

20031 +x+ M) +1=0. (15)

It can be demonstrated that (15) has only one real root in {0, 1.
The collapse load for the stress profile specified by (10) and (11) becomes

P = 2/o3, (16)

0, being the root of (15), whereas the integration constant appearing in (12)is 4 = 03 — (1 + A).

To establish the range of validity of the solution (16) it is necessary to find an extension
of the stress field from the plastic region into the central rigid zone. We are looking for
an extension satisfying the following continuity conditions on the rigid plastic boundary

m@o) = %/00,  Myleo) =1 or mlgo) = —x/e5, an
Moreover we require
m,(0) = m,(0), m,(0) < 1 (18)
The simplest possible polynomial extension satisfying (17) and (18} has the form
m= Ay + A0+ 430, m, = A+ (34,05 +1)0%/05 +4450° (19)

if the equations (9) and (16) have to be satisfied. Constants appearing in (19) are determined
from the conditions {17) and (18}. The stress field in the plate is

— —_ 2 - 3

6%~00 , Qo 2"‘(3) _200 3’3(_{{) i 0 < ¢ < go (20)

o 300 2o \Qo 300 o
T 3+D-1]e\"! 1[0\
1_%(3) — 3) : ego<e<l 1)
3es Qo 3ieo
—— 2 - 3

6% —00 5200 3’*‘(_9_) _ 4% 3"_.(9_) ,  0<eg<o, (22)
m, =< 3g, C \Qo % Qo

1, Go<eo<l, (23)

where g, is the root of {15). Now it remains only to check whether the stresses (20} and (22)
remain within the yield surface, thus whether

mg) < x/o, myle) <1 for 0<9 <9 (24)
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The first of inequalities (24) is easily seen to be satisfied because

IR S

To check whether the circumferential moment (22) remains admissible we observe
that m(0) = (6x —go)/300 < 1 holds, provided that 2¢, > 3x. Moreover m,(g,) = 1. To
prove the second of (24), therefore, it is sufficient to show that m, is not a decreasing
function within the considered region, thus

m, >0 for 0<g <o, (26)
In fact, performing the prescribed differentiation we obtain
m;,z42—992—33‘-(£ [1-(5}20 for 0<o <o, 27)
2 o Qo
which supplies the proof, provided that
200—3x = 0. 28)

The relation (28) appears to have a simple justification. If the yield equation m, = |
is assumed to hold for the entire plate, the appropriate stress boundary conditions, in
view of (18), are m,(1) = — 4, m,(0) = 1. Therefore the equation (12), together with the
above two boundary conditions, yields the collapse load,

P =6(1+1) (29)
and the stress field
m, = 1, m, = 1—(1+ )2 (30)

The collapse load (16) cannot exceed the value (29) which is associated with the total
collapse. Thus

0 2 0§ = [3(1+4)]7* (31)
and therefore the solution (16) holds for

2
ENETEY

(71X

x < u* = o3, (32)
as obtained from (135).

The relations {31) and (32), however, lead to the requirement 3x < 2g,, thus precisely
to that given by (29). The critical relation (32) is shown in Fig. 2.

08
o Solution {20)
S ~——_ 22T
a2
Solution (16)
a0 a5 10 15 20

A -

FiG. 2. Domains of validity of solutions for circular plates.
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It can be easily verified that for g, — ¢ the stress equations (20)}-(23) pass into (30).
Thus there is a continuous transition to the stress field of a homogeneous plate. For a
specific case of A = 0 in (11), thus for a simply supported plate in Fig. 3(a) the collapse
load is plotted versus the amount of reinforcement in the circumferential direction at the
plate boundary. The position of the rigid—plastic boundary is shown in Fig. 3(b). It is seen
from these figures that the plastic non-homogeneity has both qualitative and quantitative
influence on the behaviour of plastic plates.

a) b)
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Fi1G. 3. Collapse load and radius of the rigid zone vs. density of the radial reinforcement.

The presented solutions are complete because displacement rate fields associated with
the collapse loads are easily found from (7) and (8). We have

“N—ol—00), Qo <o <1, (34)
if % < 20%/3 and
w=mwyl—g), 0<p<Il, (35)

otherwise, w, being the undetermined reference rate of deflection. These collapse modes
assure positiveness of the internal dissipation, the checking procedure being trivial.

For the sake of illustration, the stress field of the complete solution for a particular
case of a clamped plate is given in Fig. 4. The broken lines represent the yield moments,

mrim(p

F1G. 4. Stress field of the complete solution.
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the heavy ones the actual distribution of bending moments for 1 = 06, x = 02 < »*
= 0-304. In this case ¢, = 0474, and therefore the collapse mode is a truncated cone as
defined by (33) and (34).

The fact that for » > »* the intensity of the radial reinforcement does not influence
the collapse load provides hints for the rational design of fibre-reinforced plates.

4. ANNULAR PLATES

Extension of the proceding analysis to annular plates with one edge free is almost
trivial and will not be discussed here. We consider an annulus of radii R and aR, o < 1,
supported at both boundaries and subjected to uniformly distributed pressure p. The
yield condition of Fig. 1 applies, except possibly for an additional radial reinforcement at
the outer support such that u > Afor § < ¢ < 1. This additional reinforcement is applied
in a narrow region at the goundary and it is justified by requirements of the rational design.

In annular plates at collapse the stress profile passes through three different regimes.
This is required by the associated flow law in conjunction with the conditions of kinematical
admissibility of a collapse mode (cf. [8, 2]). In the considered case the set of yield equations is

m, = —v, —2fe < m, < /o, x<o<o, (36)
m, = %/g, —v<m, <1, 01 <0 <0y (37)
I { — /o < m, < /o, 0, <0< P, (38)

In view of the general solution (7) and (8) for the collapse mode these yield equations
are associated with the following collapse mechanism

(e —a)/(ey —), a<g<g, (40)
o 1 ¢ <o <o, (41)
(1—g)/(1-p,), 0 <0<, (42)

which is quite analogous to that of a homogeneous plate, except, possibly, for the different
values of the parameters.
The above relations indicate the physical meaning of the stress profile transition radii
, such
¢, and g,, such that a <0, <o, <f<l.
Annular plates constitute a statically indeterminate problem with respect to the shear
and the second of equations (4) yields the expression

q = —Pe/2+ A/e, (43)

where A is a constant of integration common for all regimes (36) to (39). In view of (43)
the first of (4) takes the form (om.) = m,,,—PQZ/Z A (44)
and has to be integrated for the actual stress profiles. The resulting stress equations are
m, = —v—Pg?/6+ A+ C)o. m, = —v, a<eo <o, 45)

m, = %/o, m, = Pp?/2— A, g1 S0 <2¢y (46)

m, = 1—Pg?/6+ A+ B/o, m, =1, 0, <e <1 47
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In comparison with a homogeneous plate, only the relations (46) differ, because m,

is no longer constant.

To find the unknown parameters ¢, and g,, the collapse load P and the integration

constants 4, B, C, we have the following stress boundary conditions
mi@) = —Ha,  m(l) = —u
The remaining relations are supplied by the continuity requirements
m,) =0, m,]=0 for g=¢, and ¢ =g,
Solving these equations, one obtains the collapse load

P 2

I+v  o3-o}

and the following system for the parameters
a®+203 —3a—A)?—3Ae2 =0
1+3Qo% +203 - 3(1+ Q)03 = 0}’
where
A = (+2)/(1+v), Q = G+ /(1 +v)

The stress equations are

P . 2 01 1
E{QH b—ﬁe%w%)—gei" 5—592}, x <o <o,
m, = { /g, 2; 202 % 0y
Py, [ x 2 a2 3“1 1,
- —01)—=03|-—=0°?, <gxl,
2 {Qz"” jﬁ(gz 1) 3Q2_ 0 39 2250
-V o< X9

P
m, = 1—;—(9%-@%) 01 <2 <@y,

1 0, <pg <l
The total reaction at the inner support is

S = nM[P(o? —a?)+2v].

(48)

49

(50)

(51)

(52)

(54)

(55)

The solution presented is complete because it is both statically and kinematically
admissible and satisfies .the requirement of positiveness of the internal dissipation. This
last condition can easily be checked, comparing the signs of curvatures of the deflection

rate (40)-(42) with the signs of the moments (54).

An example of the resulting stress profile is shown in Fig. 5 by the abcd line. It
corresponds to the case of o = 02, A = 06, Q = 0-8. For the sake of clarity this stress
profile has been drawn on the yield surface, as represented in the space of (m,, m,, )
(cf[6]). In comparison with the homogeneous case the stress field in the region ¢; < ¢ < ¢,

differs considerably, since m, = const. no longer holds.
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F1G. 5. Stress profile for annular plates.

If the reinforcing net is made stronger at the outer support (as indicated by the a— line
in Fig. 5), the necessary extension 1 — f of the reinforcement in the field follows from the
requirement m,(8) = — A/B. This yields the equation B°—392f—3A(e3—0%)+203 = 0. In
case of reinforced concrete plates the additional net extends deeper into the field in order
to assure the necessary bond force at ¢ = f.

It is secen from (51) that the solutions depend upon combinations of the characteristic
yield properties of the top and bottom nets. For the case A = Q, which includes among
others also the case of simply supported plates, the values of ¢, and g, are plotted in Figs.
6 and 7. The broken lines in Fig. 7 correspond to solutions for homogeneous plates of the

.7 -

8

N
|
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22 |
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F1G. 6. Radii of the rigid zone in annular plates.

same geometry. Since the collapse load for homogeneous plates is given by relation (50),
the differences in the values of g, and ¢, indicate differences in the collapse load.
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Fic. 7. Comparison of the collapse modes for isotropic and radially reinforced plates.

It is clear from Fig. 7 that the polar net changes considerably the parameters of the
yield mechanism. Moreover, in a homogeneous point-supported plate (¢ = 0) a singularity

in the stress field takes place, m,(0)] = 2.
In Fig. 8 the collapse load versus the characteristic parameter A =  is plotted for
two values of the internal support diameter. Numerical data regarding the cases considered

50 T i
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FiG. 8. Collapse loads for annular (¢ = 0-2) and point supported (¢ = 0) plates.

are summarized in Table 1. In Fig. 9 a comparison of the collapse loads for annular
homogeneous (square mesh) and non-homogeneous (polar net) plates is presented. It is
seen that considerable differences in numerical values exist.

It is worthwhile to mention that for annular plates the necessity of introducing a
critical value of orthotropy, analogous to that given by (32), does not arise and (50} is
generally valid.
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TABLE |
o =00 o = 02
A=Q
P P
& @2 T+v 44} 45} 1oy

00 0-0000 1-0000 0-000 0-0000 1-0000 0-000
o1 04028 07734 4-598 05031 07917 5-353
02 0-4551 07222 6361 05478 07494 7645
o5 05105 0-6617 11284 0-5924 0-7022 14071
1-0 0-5386 06279 19201 06142 06774 24-498
2:0 0-5561 0-6055 34-855 06274 0-6618 45-086
0 0-5774 0-5774 0 0-6429 06429 o0

L] / /

//
) /
/
A=Q=05 // /
I -8 1/11
a /:r/
m"/ //
.——-"’"’,
as ag o4 as a8

o —

FiG. 9. Comparison of the collapse loads for isotropic and fibre reinforced plates.

5. OPTIMUM DESIGN

From the limit analysis of plates reinforced with polar nets there follows certain
consequences regarding the design. Assuming the volume of reinforcement to be the
characteristic of an optimum design, we analyse the problem with the example of simply
supported plates.

Consider an annular plate as in Section 4, with equal nets for positive and negative
bending, thus v = 1. The volume of the circumferential and the radial reinforcement is,
respectively,

V, = yMorR*(1 —o?), V. = 2yxMonR*(1 —a), (56)

where y stands for the constant depending upon the yield point of reinforcement and upon
the lever of internal forces. The total volume can be expressed as follows

V = npy(1 —a)R*. @, 57N
where the function to be minimized is
Q= (1+a+2x)/P, (58}

P being the dimensionless load.
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Let us consider a circular plate. Then @ = 0 and in view of (16) and (29) one obtains

o L +2%)05, % < x*, (59)
A1+ 2500, X > u*, (60)
Since g, = 94(x) is given by (15), these relations can be expressed in terms of » only. This

is shown in Fig. 10. The minimum of ® with respect to x is obtained for %, = »* = 0-385,
the collapse load being as given by (16), and equal to that given by (29).

—
L]

x|

20 @1 02 a3 a4 a5 06

® ———-

F16. 10. Optimum design arrangement of reinforcement for circular plates.

If the plate were isotropic, the volume of reinforcement would be related to the yield
moment M, and to the loading p as follows

V = 2yMynR? = inpyR*. (61)
From comparison of (61) with the value given by (57) for ¥ = %x,, we obtain
2
p= Wﬁ = 1-13p. (62)

For an annular plate the function (58) takes the form

® = (1 +a+2x)(e3 —e}), (63)

the functions g,(x) and @,(x) being defined by (51). In Fig. 11 the resulting diagrams are
shown for two cases of the inner radius. It is seen from this figure that the optimum design
is not sensitive to » in the large range of x > ~1.

as

a—D

ag 10 20 30 40 50 &0

¥ — -

FiG. 11. Optimum design arrangement of reinforcement for annular plates.
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The carrying capacity of a homogeneous plate for « = 0 is pR*/M, = 13-72, (5], and
the total volume of reinforcement in this case is

V = 2yMynR? = npyR2. (64)

1372
Comparing this value with (57) fora = Oand » = 2 = x, one finds that a non-homogeneous
plate of properly arranged reinforcement carries the load

2 1
=137 <I>{2)p = 1-12p. (65)
The results (62) and (65) demonstrate that non-homogeneous plates of the non-
homogeneity produced by the polar nets of reinforcement can be designed to carry higher
loads than homogeneous plates. This fact, together with the results concerning stress
fields and collapse modes, indicates the technical aspects of the studied problem. The
yield line theory [9, 2], can be easily adjusted to cover this type of non-homogeneity.

p
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Résumé-—Des solutions complétes de flexion plastique de plaques rotationnelles symmétriques sont présentées
dans le cas de non-homogénéité spécifique a des réseaux polaires de renforcement extensible. Les résultats sont
comparés 4 ceux de plaques homogénes, indiquant la différence en capacités portantes et mécanismes de rupture
ainsi gu’en distribution de contraintes. Un projet optimum pour plaques de béton armé est étudié.

Zusammenfassung—Vollstandige Losungen werden gegeben fiir die plastische Verbiegung rotationssymmet-
rischer Platten im Falle der Ungleichférmigkeit die Polarnetzen mit ausdehnbarer Bewehrung eigen ist. Die
Resultate werden mit denen homogener Platten verglichen und die Unterschiede der Bruchlasten, der Durch-
biegungsgeschwindigkeiten und der Spannungfelder werden gezeigt. Der optimale Entwurf fiir Bewehrte Platten
wird untersucht.

AGcTpakT—-IIpennararorcss MOJHBIE PELUCHUA IACTHYECKOTO W3Irnba BpalATETBHO CHMMETPHYECKHX
IWIACTHH B CJlIy4ae HEOAHOPOIHOCTH, crenuduueckoil ans NONSPHRIX CETOK apMHpobanus. PesynsTarhl
CPaBHHBAXOTCA C PE3y/IbTATAME OXHOPONHOM IUTACTHHBI, YKA3bIBasA PA3HULY B PA3PYHIAIONIMX HArpy3kax,
MEXaHU3MaX pPa3pyMeHus M monsx Hanpsokewus. M3yvaercs rpofGnema MUHH-MAMBHOTO apHHPOLAHHSI
Kene300eroHHbBIX MIACTHH,



